Preparation and Photocatalytic Characterization of Nanoporous TiO₂

Xue Ping LI*, Jing Bo ZHANG, Fen YIN, Yuan LIN, Xu Rui XIAO

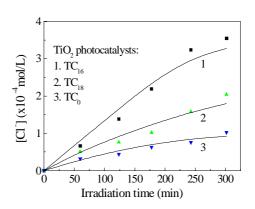
Laboratory of Photochemistry, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080

Abstract: Nanoporous TiO_2 photocatalysts were prepared by use of controlled drying method with surfactants. The surface area and porous properties are dependent on the chain length of incorporated surfactant cation. The TiO_2 materials prepared in the presence of surfactant molecules during the gel formation exhibit much higher photocatalytic activity than that prepared in the absence of surfactants.

Keywords: Nanoporous, TiO₂, photocatalysis.

The sol-gel technique has been a very effective method for preparing nanometer TiO_2 photocatalysts¹. But, there is a problem that when a hydrous titanium (IV) oxide gel is dried, the surface tension of solvents (usually water and /or alcohol) contained in the pores within the Ti-O-Ti network leads to the shrinkage and collapse of the pores, reducing the surface area and destroying the microstructure of the dried gel. In order to obtain nanoporous TiO_2 with high surface area the collapse of the network structure has been overcome by supercritical drying of the hydrous TiO_2 gel². In this work we report the preparation of nanoporous TiO_2 by a simple and effective method – controlled drying method with surfactants and the study of the photocatalytic degradation of dichloroacetic acid (DCA).

Nanoporous TiO_2 photocatalysts were prepared by a sol–gel synthesized from the combined solution of the $TiOCl_2$ precursor and surfactants (alkyltrimethylammonium halide) under basic condition and subsequent controlled drying with surfactants and calcination. The surface area and porous properties of materials were determined on a Micromeritics ASAP 2000 instrument. The photocatalytical experiments were performed in a Pyrex cell with aqueous solution of DCA irradiated by high pressure Hg lamp.


Figure 1 gives pore size distributions calculated from the desorption isotherms for three samples: TC_{12} , TC_{16} and TC_{18} . These TiO_2 materials are nanoporous with narrower pore size distribution and generally increasing the chain length of incorporated surfactant cation (C_{12} – C_{18}) results in apparent shift in the pore diameter distribution to larger size. The detailed data of surface area and porosities were listed in **Table 1**. Very significant increase in S_{BET} and V_{TP} was observed for TC_{12} , TC_{16} and TC_{18} , as compared to TC_{0} without surfactant molecules during the formation of the gel. The

variation of S_{BET} , V_{TP} and the average pore diameter are dependent on the chain length of incorporated surfactant cation.

Figure 1 Pore size distribution for three TiO₂ samples calcined at 450°C

Figure 2 Change of [Cl] with irradiation time

Figure 2 compares the concentration change of Cl^- produced in photocatalytical degradation of DCA with irradiation time on different samples. TC_{16} and TC_{18} exhibit much higher photocatalytic activity than TC_0 . The apparent constants for Cl^- production, K_{Cl} are 3.75×10^{-3} , 1.6×10^{-3} and 7.0×10^{-4} min⁻¹, respectively. The larger pore size (10.2 nm) for TC_{16} sample may be favorable to the diffusion of organic molecules from the solution to the TiO_2 surface and reducing the recombination of holes and electrons, thus leading to higher photocatalytic activity than TC_{18} .

Table 1 BET surface area (S_{BET}), total pore volume (V_{TP}) and average pore diameter for samples calcined at $450^{\circ}C$

Material	$S_{BET} (m^2 g^{-1})$	V_{TP} (cm ³ g ⁻¹)	Average pore diameter (nm)
TC_0	0.0005	0.0055	/
TC_{12}	237	0.3402	5.7
TC_{16}	169	0.4295	10.2
TC ₁₈	252	0.4316	6.9

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 29877025).

References

- 1. O. Yutaka, S. Hisao, et al., J. Am. Ceram. Soc., 1996, 79, 825.
- 2. G. Dagan, M. Tomkiewicz, J. Phys. Chem., 1993, 97, 12652.

Received 30 November, 2001